首页> 外文OA文献 >Reputation-guided evolutionary scheduling algorithm for independent tasks in inter-clouds environments
【2h】

Reputation-guided evolutionary scheduling algorithm for independent tasks in inter-clouds environments

机译:用于云间环境中独立任务的信誉引导进化调度算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Self-adaptation provides software with flexibility to different behaviours (configurations) it incorporates and the (semi-) autonomous ability to switch between these behaviours in response to changes. To empower clouds with the ability to capture and respond to quality feedback provided by users at runtime, we propose a reputation guided genetic scheduling algorithm for independent tasks. Current resource management services consider evolutionary strategies to improve the performance on resource allocation procedures or tasks scheduling algorithms, but they fail to consider the user as part of the scheduling process. Evolutionary computing offers different methods to find a near-optimal solution. In this paper we extended previous work with new optimisation heuristics for the problem of scheduling. We show how reputation is considered as an optimisation metric, and analyse how our metrics can be considered as upper bounds for others in the optimisation algorithm. By experimental comparison, we show our techniques can lead to optimised results.
机译:自适应为软件提供了灵活的灵活性,使其适应其所包含的不同行为(配置),并具有(半)自主的能力以响应变化而在这些行为之间进行切换。为了使云具有捕获和响应用户在运行时提供的质量反馈的能力,我们针对独立任务提出了信誉指导的遗传调度算法。当前的资源管理服务正在考虑使用进化策略来提高资源分配过程或任务调度算法的性能,但是他们无法将用户视为调度过程的一部分。进化计算提供了不同的方法来寻找接近最佳的解决方案。在本文中,我们使用新的优化启发式方法扩展了先前的工作,以解决调度问题。我们将展示如何将信誉视为优化指标,并分析在优化算法中如何将我们的指标视为其他指标的上限。通过实验比较,我们证明了我们的技术可以带来优化的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号